
The Evolution of Programming Models
in Response to Energy Efficiency Constraints

John Shalf
Department Head: Computer Science and Data Sciences (CSDS)
CTO: National Energy Research Scientific Computing Center (NERSC)

Oklahoma Supercomputing Symposium 2013
October 2, 2013

National Energy Research Scientific
Computing Center (NERSC)

• Located at Berkeley Lab
• Provides computing for a broad
science
 community:

• 5000 users, 700 research projects
• 48 states; 65% from universities
• Hundreds of users each day
• ~1500 publications per year

• Systems designed for science:
• 1.3PF Hopper + .5 PF clusters
• With services for consulting, data

analysis and more

 2

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E+18

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

NERSC Major Systems (Flops/sec)

NERSC’s 40 Year History of
Production High Performance Computing

Growth Rate: 10x every 4 years

Goal: application performance

3

NERSC-9
1 Exa

Moving Science Community
through a Computing Revolution

30 Years of Exponential
Performance Improvement

Source: TOP500 November 2012

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

59.7 GFlop/s

400 MFlop/s

1.17
TFlop/s

17.6
PFlop/s

76.5 TFlop/s

162 PFlop/s

SUM

N=1

N=500

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

1 Eflop/s

From Peter
Kogge, DARPA
Exascale Study

But Its Going to Be Very Hard to Continue!
(Requires a Laboratory-Wide Strategy for Next Decade)

Without major changes, computing cannot continue
historical trends of performance improvement

5

Current Technology Roadmaps will Depart
from Historical Performance Gains

… and the power costs will still be staggering

From Peter Kogge,
DARPA Exascale Study

$1M per megawatt per year! (with CHEAP power)

Technology Challenges for the Next Decade

1/23/

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 7

Parallelism is
growing at

exponential rate

Power is leading
constraint for future
performance growth

By 2018, cost of a FLOP will be
less than cost of moving 5mm

across the chip’s surface (locality
will really matter)

Reliability going down for
large-scale systems, but
also to get more energy

efficiency for small systems

Memory Technology
improvements are

slowing down

The disruptions are primarily within the node
• Only resilience and interconnect scaling are exclusively HPC
• Exponential growth of parallelism, power, and memory trends have pervasive

impact on computing for the coming decade

Worse yet, the changes are already underway!
• There is no need point in waiting for the “ExaFLOP computer”.
• These trends are happening NOW!

The Challenge of our Decade: Performance growth in fixed power budget
• The challenge is as dramatic as transition from vector to MPP
• This transition affects all computing for science from smallest to the largest scale

• Fundamentally breaks our software infrastructure (need to re-architect)

These Trends Affect ALL users at ALL SCALES
(this is NOT just about exascale)

Top 10 Systems in November 2012

Site Manufacturer Computer Country Cores
Rmax
[Pflop
s]

Power
[MW]

1 Oak Ridge National Laboratory Cray
Titan
Cray XK7, Opteron 16C 2.2GHz, Gemini,
NVIDIA K20x

USA 560,640 17.6 8.21

2 Lawrence Livermore National
Laboratory IBM

Sequoia
BlueGene/Q,
Power BQC 16C 1.6GHz, Custom

USA 1,572,864 16.3 7.89

3 RIKEN Advanced Institute for
Computational Science Fujitsu

K Computer
SPARC64 VIIIfx 2.0GHz,
Tofu Interconnect

Japan 795,024 10.5 12.66

4 Argonne National Laboratory IBM
Mira
BlueGene/Q,
Power BQC 16C 1.6GHz, Custom

USA 786,432 8.16 3.95

5 Forschungszentrum Juelich (FZJ) IBM
JuQUEEN
BlueGene/Q,
Power BQC 16C 1.6GHz, Custom

Germany 393,216 4.14 1.97

6 Leibniz Rechenzentrum IBM
SuperMUC
iDataPlex DX360M4,
Xeon E5 8C 2.7GHz, Infiniband FDR

Germany 147,456 2.90 3.52

7 Texas Advanced Computing
Center/UT Dell

Stampede
PowerEdge C8220,
Xeon E5 8C 2.7GHz, Intel Xeon Phi

USA 204,900 2.66

8 National SuperComputer
Center in Tianjin NUDT

Tianhe-1A
NUDT TH MPP,
 Xeon 6C, NVidia, FT-1000 8C

China 186,368 2.57 4.04

9 CINECA IBM
Fermi
BlueGene/Q,
Power BQC 16C 1.6GHz, Custom

Italy 163,840 1.73 0.82

10 IBM IBM
DARPA Trial Subset
Power 775,
Power7 8C 3.84GHz, Custom

USA 63,360 1.52 3.57

Potential System Architectures
What is Possible

Systems 2009 2015 +1/-0 2018 +1/-0

System peak 2 Peta 100-300 Peta 1 Exa

Power 6 MW ~15 MW ~20 MW

System memory 0.3 PB 5 PB 64 PB (+)

Node performance 125 GF 0.5 TF or 7 TF 2 TF or 10TF

Node memory BW 25 GB/s 0.2TB/s or 0.5TB/s 0.4TB/s or 1TB/s

Node concurrency 12 O(100) O(1k) or 10k

Total Node Interconnect BW 3.5 GB/s 100-200 GB/s
10:1 vs memory
bandwidth
2:1 alternative

200-400GB/s
(1:4 or 1:8 from memory
BW)

System size (nodes) 18,700 50,000 or 500,000 O(100,000) or O(1M)

Total concurrency 225,000 O(100,000,000) *O(10)-
O(50) to hide latency

O(billion) * O(10) to
O(100) for latency hiding

Storage 15 PB 150 PB 500-1000 PB (>10x
system memory is min)

IO 0.2 TB 10 TB/s 60 TB/s (how long to
drain the machine)

MTTI days O(1day) O(1 day) Slide 10

Presenter
Presentation Notes
I’m not going to be able to program the machine the way I do today! (NO DUH!!!)Rewriting your code is a cataclysmic event. You know that some day you may need to do that, but if so, you only want to do that once!Missing LatenciesMessage injection ratesFlops/watt cost money and bytes/flop that costs moneyJoule/op in 2009, 2015 and 2018: 	2015: 100 pj/opCapacity doesn’t cost as much power as bandwidth 	how many joules to move a bit	2 picojoule/bit	75pj/bit for accessing DRAM32 Petabytes: with system memory at same fraction of system Need $ numberBest machine for 20MW and best machine for $200MMemory op is 64 bit word of memory	75 picojoule bit for (multiply by 64) (DDR 3 spec)	50 pj/ for an entire 64 bit opMemory technology in 5pj/bit by 2015 if we invest soonAnything more aggressive than 4pj/bit is close to the limit (will not sign up for 2pj/bit)2015 10 pj/flop	5pj/flop in 2018So we are talking 30:1 ratio of memory reference per flop 10pj/operation to bring a byte in8 terabits * 1pj -> 8 wattsJEDEC is fundamentally broken (DDR4 is the end)	Low swing differential	insertion of known technology20GB/s per component to 1 order of magnitude more	10-12 Gigabits/second per wire16-64 using courant limited scaling of hydro codesCost per DRAM in that timeframe and how much to spend# outstanding memory references per cycle- bandwidth * latency	above based on memory reference size 	memory concurrency 	200 cycles from DRAM (2GHz) is 100ns (40ns for memory alone). With queues will be 100ns	O(1000) references per node to memory	O(10k) for 64 byte cache lines?Need to add system bisection: 	2015: whatever local node bandwidth: factor of 4-8 or 2-4 against per-node interconnect bandwidth	2018:	Occupancy vs latency: 	zero occupancy (1 slot for message launch)	5ns per 	2-4 in 20152-4 in 201810^4 vs 10^9th

Why can’t we keep doing what we’ve been doing?
Optimization target for hardware has evolved to new direction
(but pmodels have not kept up)

Old Constraints

• Peak clock frequency as primary
limiter for performance improvement

• Cost: FLOPs are biggest cost for
system: optimize for compute

• Concurrency: Modest growth of
parallelism by adding nodes

• Memory scaling: maintain byte per
flop capacity and bandwidth

• Locality: MPI+X model (uniform
costs within node & between nodes)

• Uniformity: Assume uniform
system performance

• Reliability: It’s the hardware’s
problem

New Constraints

• Power is primary design constraint for
future HPC system design

• Cost: Data movement dominates:
optimize to minimize data movement

• Concurrency: Exponential growth of
parallelism within chips

• Memory Scaling: Compute growing
2x faster than capacity or bandwidth

• Locality: must reason about data
locality and possibly topology

• Heterogeneity: Architectural and
performance non-uniformity increase

• Reliability: Cannot count on
hardware protection alone

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 11 1/23/

Fundamentally breaks our current programming paradigm and computing ecosystem

Programming Models are a Reflection of the
Underlying Machine Architecture
• Express what is important for performance
• Hide complexity that is not consequential to performance
Programming Models are Increasingly Mismatched
with Underlying Hardware Architecture
• Changes in computer architecture trends/costs
• Performance and programmability consequences
Recommendations on where to Reformulate
Programming Models for the Future of HPC
• Emphasis on Performance Portability
• What to virtualize
• What to make more expressive/visible
• What to ignore

Effect of Hardware on Programming Models

The Programming Model is a Reflection of the
Underlying Abstract Machine Model

Equal cost SMP/PRAM model
• No notion of non-local access
• int [nx][ny][nz];

Cluster: Distributed memory model
• No unified memory
• int [localNX][localNY][localNZ];

PGAS for horizontal locality
• Data is LOCAL or REMOTE
• shared [Horizontal] int [nx][ny][nz];

HPGAS for vertical data movement
• Depth of hierarchy also matters now
• shared [Vertical][Horizontal] int [x][y][z];?

13

Presenter
Presentation Notes
GridLab saying “Just one more layer”	Is that the same for HPGAS? Is adding layers sensible?

Abstract Machine Models
Definition: An Abstract Machine model represents the
machine attributes that will be important to reasoning
about code performance

• Enables us to reason about how to map algorithm onto
underlying machine architecture

• Enables us to reason about power/performance trade-offs for
different algorithm or execution model choices

• Want model to be as simple as possible, but not neglect any
aspects of the machine that are important for performance

Notional Multi-Scale Machine Model
(what do we need to reason about when designing a new code?)

Cores
•How Many
•Heterogeneous
•SIMD Width

Network on Chip (NoC)
•Are they equidistant or
•Constrained Topology (2D)

On-Chip Memory Hierarchy
•Automatic or Scratchpad?
•Memory coherency method?

Node Topology
•NUMA or Flat?
•Topology may be important
•Or perhaps just distance

Memory
•Nonvolatile / multi-tiered?
•Intelligence in memory (or not)

Fault Model for Node
• FIT rates, Kinds of faults
• Granularity of faults/recovery

Interconnect
•Bandwidth/Latency/Overhead
•Topology

Primitives for data
movement/sync

•Global Address Space or
messaging?
•Synchronization
primitives/Fences

For each parameterized machine attribute, can
• Ignore it: If ignoring it has no serious power/performance consequences

• Abstract it (virtualize): If it is well enough understood to support an automated mechanism to
optimize layout or schedule
• This makes programmers life easier (one less thing to worry about)

• Expose it (unvirtualize): If there is not a clear automated way of make decisions
• Must involve the human/programmer in the process (make pmodel more expressive)
• Directives to control data movement or layout (for example)

Want model to be as simple as possible, but not neglect any aspects of the
machine that are important for performance

Notional Multi-Scale Abstract Machine Model
(what do we need to reason about when designing a new code?)

Data Movement

17

• Cost to move a bit on copper wire:
• power= bitrate * Length / cross-section area

• Wire data capacity constant as feature size shrinks
• Cost to move bit proportional to distance
• ~1TByte/sec max feasible off-chip BW (10GHz/pin)
• Photonics reduces distance-dependence of bandwidth

The Problem with Wires:
Energy to move data proportional to distance

Copper requires to signal amplification
even for on-chip connections

Photonics requires no redrive
and passive switch little power

1

10

100

1000

10000

now

SMP

The Cost of Data Movement

MPI

pi
co

 jo
ul

es
 /

bi
t

1

10

100

1000

10000

now

SMP

The Cost of Data Movement

MPI

CMP Cost of a FLOP

pi
co

 jo
ul

es
 /

bi
t

The Cost of Data Movement in 2018

FLOPs will cost less
than on-chip data

movement! (NUMA)

pi
co

 jo
ul

es
 /

bi
t

Data Movement Costs

1

10

100

1000

10000

Pi
co

Jo
ul

es

now

2018

Energy Efficiency will require careful management of data locality

Important to know when you are on-chip and when data is off-chip!

• Current Algorithms are designed to minimize FLOPs
• Often at the expense of data movement

• But if data movement costs more than FLOPs, we are
using the wrong metric for optimizing algorithms!

• Future of algorithm design
• Incorporate data movement costs as a metric for “algorithm

complexity”
• Consume additional flops to AVOID data movement (Communication

Avoiding Algorithms)
• And make communication “locality aware” (will talk more about that)
• Even communication topology may be important

Consequences for Algorithm Design

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 23

Future of On-Chip Architecture
(Nov 2009 DOE arch workshop)

~1000-10k simple cores
4-8 wide SIMD or VLIW bundles
Either 4 or 50+ HW threads
On-chip communication Fabric
• Low-degree topology for on-chip

communication (torus or mesh)
• Can we scale cache-coherence?
• HW msg. passing
• Global (possibly nonCC memory)
• Shared register file (clusters)
Off-chip communication fabric
• Integrated directly on an SoC
• Reduced component counts
• Coherent with TLB (no pinning)

Scale-out for Planar geometry

Cost of Data Movement
(towards “coherence domains” on chip)

Cost of moving long-distances on chip
motivates clustering on-chip
• 1mm costs ~6pj (today & 2018)
• 20mm costs ~120 pj (today & 2018)
• FLOP costs ~100pj today
• FLOP costs ~25pj in 2018

Different Architectural Directions
• GPU: WARPs of hardware threads clustered

around shared register file
• CMP: limited area cache-coherence
• CMT: hardware multithreading clusters

Data Locality Management
Vertical Locality Management
(spatio-temporal optimization)

Horizontal Locality Management
(topology optimization)

26

Software Mechanisms
for Expressing Locality

Problems with Existing Abstractions
for Expressing Locality

Our current programming models assume all
communicating elements are equidistant (PRAM)
• OpenMP, and MPI each assume flat machine at their level of parallelism

But the machine is not flat!!!
• Lose performance because expectation and reality are mismatched
• Pmodel does not match underlying machine model!!

What is wrong with Flat MPI?
• 10x higher bandwidth between cores on chip
• 10x lower latency between cores on chip
• If you pretend that every core is a peer (each is just a generic MPI rank) you

are leaving a lot of performance on the table
• You cannot domain-decompose things forever

Two-level Parallelism? (MPI+X?)

Hybrid Model (MPI+X)
• Recognizes biggest cost delta is when you go off-chip
• This is not the same as old SMPs

– 10x-100x higher bandwidth between cores on chip and 10x-100x lower latency
• Failure to exploit hierarchical machine architecture will

drastically inhibit ability to efficiently exploit concurrency!
(requires code structure changes)

If this abstraction is sufficient to capture
performance (within factor of 2x) then why make
things more complicated by having hierarchical
abstraction?

Presenter
Presentation Notes
System programmers of serial applications write enough bugs into the code as it is. Now there is another dimension of mistakes that can be made involving incorrect reasoning about data-flow hazards. What we need is a mechanism that fails by inhibiting performance in response to incorrect reasoning rather than getting the wrong answer (and doing so inconsistently). Transactions try to deliver this… if you fail to identify a dataflow hazard (which would normally result in changed answer), then the transaction will roll back and performance collapses to the serial case. Any way that we can degrade performance in response to an error in reasoning rather than outright failing is a benefit.

Comm Perf of 3D FFT on Franklin

0

10

20

30

40

50

60

128 256 512 1024 2048 4096

32 64 128 256 512 1024

No of Nodes and Cores

P
e

rc
e

n
ta

g
e

 o
f

C
o

m
m

Comm MPI
Comm MPI + OpenMP

Current Practices (2-level Parallelism)
Hybrid Model improves 3D FFT communication performance
• Enables node to send larger messages between nodes
• Substantial improvements in communications efficiency

Good News!

Benefits of expressing
Two-levels of locality

Current Practices (2-level Parallelism)
NUMA Effects Ignored (with huge consequence)

MPI+OMP Hybrid
• Reduces memory footprint
• Increases performance up to NUMA-node limit
• Then programmer responsible for matching up computation with data

layout!! (UGH!)
• Makes library writing difficult and Makes AMR nearly impossible!

It’s the Revenge
of the SGI
Origin2000

Bad News!

Presenter
Presentation Notes
How could we let it get this bad!???

Implicitly binds compute location to data layout
Data Layout in PGAS understands two categories of
data access performance

– Local
– Not local

Enables powerful locality aware looping constructs

– Can write loop in conventional form, while typesystem
determines data layout

– UPC_FORALL() will execute iterations where data is local
(affine renumbering of loop iterations)

• this is HUGE because totally abstracts/virtualizes # cores
• It also implicitly binds execution locality to data layout

This is better than flat model, but . . .

Partitioned Global Address Space (PGAS)
better expression of data locality

PGAS 1D partitions May Be Insufficient for
Expressing hierarchical energy and locality cost

Hierarchical Energy Costs
• FP Op: 100pj
• Register: 3.5pj
• 1mm on chip: 6pj
• 20mm on chip: 120pj
• Off-chip (SMP): 250pj
• Off-chip (DRAM): 2000pj
• Off-chip (neighboring node): ~2500pj
• Off-chip (cross-system): ~3000pj

Example from UPC

1D Decomp
• Shared [blocksize] int [nx][ny][nz]

3D Decomp
• Struct gridcell_s { int cell[cellsize] }
• Shared [blocksize] gridcell_t cellgrids[nthreads];
• #define grids(gridno,z,y,z) cell_grids[gridno][((z)/DIMZ)

*NO_ROWS*NO_COLS+ etc…..

35

Multidimensional Blocking?
• Shared [coreblock][nodeblock] int x[nx][ny];

36

0,0

0,1

0,2

0,3

0,n

1,0

1,1

1,2

1,3

1,n

2,0

2,1

2,2

2,3

2,
N

m,0

M,1

M,
2

M,3

PN

co
re

bl
oc

k

Nodeblock

Doesn’t really
match our

target
machine

Our target abstract machine

Expressing Hierarchical Layout
Hierarchical layout statements

– Express mapping of “natural” enumeration of an array to the unnatural
system memory hierarchy

– Maintain unified “global” index space for arrays (A[x][y][z])
– Support mapping to complex address spaces
– Convenient for programmers

Iteration expressions more powerful when they
bind to data locality instead of threadnumber

– instead of upc_forall(;;;<threadnumber>)
– Use upc_forall(;;;<implicitly where Array A is local>)

upc_forall(i=0;i<NX;i++;A)
 C[j]+=A[j]*B[i][j]);

 37

Hierarchical Layout Statements
Building up a hierarchical layout

– Layout block coreblk {blockx,blocky};
– Layout block nodeblk {nnx,nny,nnz};
– Layout hierarchy myheirarchy {coreblk,nodeblk};
– Shared myhierarchy double a[nx][ny][nz];

38

• Then use data-localized parallel loop
 doall_at(i=0;i<nx;i++;a){

 doall_at(j=0;j<ny;j++;a){
 doall_at(k=0;k<nz;k++;a){
 a[i][j][k]=C*a[i+1]…>

• And if layout changes, this loop remains the
same

Satisfies the request of the application developers
(minimize the amount of code that changes)

Conclusions on Data Layout
Failure to express data locality has substantial cost in
application performance
• Compiler and runtime cannot figure this out on its own given limited

information current languages and programming models provide

Hierarchical data layout statements offer better
expressiveness
• Must be hierarchical
• Must be multidimensional
• Support composable build-up of layout description

Data-centric parallel expressions offer better
virtualization of # processors/threads
• Don’t execute based on “thread number”
• Parallelize & execute based on data locality
• Enables layout to be specified in machine-dependent manner without

changing execution

39

Interconnects

Technology Trends and Effects on Application
Performance

40

Scalable Interconnects

Can’t afford to continue with Fat-
trees or other Fully-Connected
Networks (FCNs)

But will Ultrascale applications
perform well on lower degree
networks like meshes, hypercubes
or torii. Or high-radix
routers/tapered dragonfly?

How can we wire up a custom
interconnect topology for each
application?

42

Interconnect Design Considerations
for Message Passing Applications

• Application studies provide insight
to requirements for Interconnects
(both on-chip and off-chip)
– On-chip interconnect is 2D planar

(crossbar won’t scale!)
– Sparse connectivity for most

apps.; crossbar is overkill
– No single best topology
– Most point-to-point message

exhibit sparse topology + often
bandwidth bound

– Collectives tiny and primarily
latency bound

• Ultimately, need to be aware of the
on-chip interconnect topology in
addition to the off-chip topology

– Adaptive topology interconnects (HFAST)
– Intelligent task migration?

43

Interconnect Design Considerations
for Message Passing Applications

• Application studies provide insight
to requirements for Interconnects
(both on-chip and off-chip)
– On-chip interconnect is 2D planar

(crossbar won’t scale!)
– Sparse connectivity for most

apps.; crossbar is overkill
– No single best topology
– Most point-to-point message

exhibit sparse topology + often
bandwidth bound

– Collectives tiny and primarily
latency bound

• Ultimately, need to be aware of the
on-chip interconnect topology in
addition to the off-chip topology

– Adaptive topology interconnects (HFAST)
– Intelligent task migration?

Opportunity

CCSM Performance Variability
(trials of embedding communication topologies)

Result of 311 runs of the coupled climate model showing model
throughput as a function of completion date.

Data from Harvey Wasserman

COV ~9%

Node placement of a fast, average and slow run

Fast run: 940 seconds Slow run: 2462 seconds Average run: 1100 seconds

Y=8

X=17

Z=24

from Katie Antypas

Node placement of a fast, average and slow run

Fast run: 940 seconds Slow run: 2462 seconds Average run: 1100 seconds

Y=8

X=17

Z=24

from Katie Antypas

Failure to exploit
opportunity

(when virtualization of
topology goes wrong)

Topology Optimization
(turning Fat-trees into Fit-trees)

A Fit-tree uses OCS to prune
unused (or infrequently used)
connections in a Fat-Tree
Tailor the interconnect
bandwidth taper to match
application data flows

47

Huge opportunity for communication topology
optimization to improve performance

– Runtime information gathering for active task migration, circuit
switching

– Use intelligent runtime to remap for locality or to use circuit
switching to optimize switch topology

Current Programming Models do not provide facility to
express topology

– OpenMP topology un-aware
– MPI has topology directives (tedious, and rarely implemented or

used)
– Results in substantial measurable losses in performance

(within node/OpenMP and inter-node/MPI)

Need to provide the compiler, runtime & resource manager more information about topology

Conclusions on Interconnect

Heterogeneity / Inhomogeneity

The case for asynchronous runtime systems
(aka “execution models”)

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

• Heterogeneous compute engines (hybrid/GPU computing)
• Irregular algorithms
• Fine grained power mgmt. makes homogeneous cores look

heterogeneous
– thermal throttling on Sandybridge – no longer guarantee deterministic clock rate

• Nonuniformities in process technology creates non-uniform
operating characteristics for cores on a CMP

• Fault resilience introduces inhomogeneity in execution rates
– error correction is not instantaneous
– And this will get WAY worse if we move towards software-based resilience

Presenter
Presentation Notes
David Wessel: fired if you miss a beat.

Sources of performance heterogeneity increasing
• Heterogeneous architectures (accelerator)
• Thermal throttling
• Performance heterogeneity due to transient error recovery

Current Bulk Synchronous Model not up to task
• Current focus is on removing sources of performance variation

(jitter), is increasingly impractical
• Huge costs in power/complexity/performance to extend the life

of a purely bulk synchronous model

Embrace performance heterogeneity: Study use of asynchronous
computational models (e.g. SWARM, HPX, and other concepts from 1980s)

Conclusions on Heterogeneity

Why Wait for Exascale
everything is breaking NOW!

The Power and Clock Inflection Point in 2004

Source: Kogge and Shalf, IEEE CISE

It’s the End of the World as We Know It!

Source: Kogge and Shalf, IEEE CISE

Summary Trends

The changes we are concerned about are underway NOW

Specifics of exascale machine are not as important as the design TRENDS

Focus on the first derivative of change rather than the target point design
• If you focus on target design, then it will create a brittle non-performance-portable

solution
• Performance portability SHOULD be the right metric (how little code to change

between generations of machines)
• Architectural Simulation helps us with sensitivity analysis and extrapolation

To this end, we should concentrate on what hardware abstractions correctly
minimize the impact of these design trends
• How do I make # cores seemingly go away? (or scale without intervention)
• How do I express communication costs in a way that makes it easier to reason

about data placement/locality without being pinned down to the specifics of one
machine

Why Wait for Exascale Machine?

Programming model IS, and SHOULD BE a proper
reflection of the underlying machine architecture

Machine attributes are parameterized

•Changes with each generation of machine and between different vendor
implementations
•Pmodel should target the parameterized attributes

For each parameterized machine attribute
• Ignore it: If ignoring it has no serious power/performance

consequences
• Abstract it (virtualize): If it is well enough understood to support an

automated mechanism to optimize layout or schedule
• Expose it (unvirtualize): If there is not a clear automated way of

make decisions

Remember the Abstract
Machine Model

Data layout (currently, make it more expressive)
• Need to support hierarchical data layout that closer matches architecture
• Automated method to select optimal layout is elusive, but type-system can

support minimally invasive user selection of layout
Horizontal locality management (virtualize)
• Flexibly use message queues and global address space
• Give intelligent runtime tools to dynamically compute cost of data movement

Vertical data locality management (make more expressive)
• Need good abstraction for software managed memory
• Malleable memories (allow us to sit on fence while awaiting good abstraction)

Heterogeneity (virtualize)
• Its going to be there whether you want it or not
• Pushes us towards async model for computation (post-SPMD)

Parallelism (virtualize)
• Need abstraction to virtualize # processors (but must be cognizant of layout)
• For synchronous model (or sections of code) locality-aware iterators or loops

enable implicit binding of work to local data.
• For async codes, need to go to functional model to get implicit parallelism

– Helps with scheduling
– Does not solve data layout problem

Conclusions

	The Evolution of Programming Models �in Response to Energy Efficiency Constraints
	National Energy Research Scientific �Computing Center (NERSC)
	NERSC’s 40 Year History of �Production High Performance Computing
	30 Years of Exponential �Performance Improvement
	Slide Number 5
	… and the power costs will still be staggering
	Technology Challenges for the Next Decade
	These Trends Affect ALL users at ALL SCALES�(this is NOT just about exascale)
	Top 10 Systems in November 2012
	Potential System Architectures�What is Possible
	Why can’t we keep doing what we’ve been doing?�Optimization target for hardware has evolved to new direction �(but pmodels have not kept up)
	Effect of Hardware on Programming Models
	The Programming Model is a Reflection of the Underlying Abstract Machine Model
	Abstract Machine Models
	Notional Multi-Scale Machine Model�(what do we need to reason about when designing a new code?)
	Notional Multi-Scale Abstract Machine Model�(what do we need to reason about when designing a new code?)
	Data Movement
	The Problem with Wires: �Energy to move data proportional to distance
	The Cost of Data Movement
	The Cost of Data Movement
	The Cost of Data Movement in 2018
	Data Movement Costs
	Consequences for Algorithm Design
	Future of On-Chip Architecture�(Nov 2009 DOE arch workshop)
	Cost of Data Movement�(towards “coherence domains” on chip)
	Data Locality Management
	Software Mechanisms�for Expressing Locality
	Problems with Existing Abstractions for Expressing Locality
	Two-level Parallelism? (MPI+X?)
	Current Practices (2-level Parallelism)
	Current Practices (2-level Parallelism) NUMA Effects Ignored (with huge consequence)
	Partitioned Global Address Space (PGAS)�better expression of data locality
	PGAS 1D partitions May Be Insufficient for �Expressing hierarchical energy and locality cost
	Example from UPC
	Multidimensional Blocking?
	Expressing Hierarchical Layout
	Hierarchical Layout Statements
	Conclusions on Data Layout
	Interconnects
	Scalable Interconnects
	Interconnect Design Considerations �for Message Passing Applications
	Interconnect Design Considerations �for Message Passing Applications
	CCSM Performance Variability�(trials of embedding communication topologies)
	Node placement of a fast, average and slow run
	Node placement of a fast, average and slow run
	Topology Optimization�(turning Fat-trees into Fit-trees)
	Conclusions on Interconnect
	Heterogeneity / Inhomogeneity�
	Assumptions of Uniformity is Breaking�(many new sources of heterogeneity)
	Conclusions on Heterogeneity
	Why Wait for Exascale�everything is breaking NOW!
	The Power and Clock Inflection Point in 2004
	It’s the End of the World as We Know It!
	Why Wait for Exascale Machine?
	Remember the Abstract Machine Model
	Conclusions

