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National Energy Research Scientific  
Computing Center (NERSC)  

• Located at Berkeley Lab 
• Provides computing for a broad 
science 
  community: 

• 5000 users, 700 research projects 
• 48 states; 65% from universities  
• Hundreds of users each day 
• ~1500 publications per year 

• Systems designed for science: 
• 1.3PF Hopper + .5 PF clusters 
• With services for consulting, data 

analysis and more 
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NERSC’s 40 Year History of  
Production High Performance Computing 

Growth Rate: 10x every 4 years 

Goal: application performance 
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NERSC-9 
1 Exa 

Moving Science Community 
through a Computing Revolution 



30 Years of Exponential  
Performance Improvement 

Source: TOP500 November 2012 
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From Peter 
Kogge, DARPA 
Exascale Study 

But Its Going to Be Very Hard to Continue! 
(Requires a Laboratory-Wide Strategy for Next Decade) 

Without major changes, computing cannot continue 
historical trends of performance improvement 
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Current Technology Roadmaps will Depart 
from Historical Performance Gains 



… and the power costs will still be staggering 

From Peter Kogge, 
DARPA Exascale Study 

$1M per megawatt per year! (with CHEAP power) 



Technology Challenges for the Next Decade 

1/23/
 

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 7 

Parallelism is 
growing at 

exponential rate 

Power is leading 
constraint for future 
performance growth 

By 2018, cost of a FLOP will be 
less than cost of moving 5mm 

across the chip’s surface (locality 
will really matter) 

Reliability going down for 
large-scale systems, but 
also to get more energy 

efficiency for small systems 

Memory Technology 
improvements are 

slowing down 



The disruptions are primarily within the node 
• Only resilience and interconnect scaling are exclusively HPC 
• Exponential growth of parallelism, power, and memory trends have pervasive 

impact on computing for the coming decade 

 
Worse yet, the changes are already underway! 
• There is no need point in waiting for the “ExaFLOP computer”.   
• These trends are happening NOW! 
 

The Challenge of our Decade: Performance growth in fixed power budget 
• The challenge is as dramatic as transition from vector to MPP 
• This transition affects all computing for science from smallest to the largest scale 

• Fundamentally breaks our software infrastructure (need to re-architect) 

 
 
 

These Trends Affect  ALL users at ALL SCALES 
(this is NOT just about exascale) 



Top 10 Systems in November 2012 

# Site Manufacturer Computer Country Cores 
Rmax 
[Pflop
s] 

Power 
[MW] 

1 Oak Ridge National Laboratory Cray 
Titan 
Cray XK7, Opteron 16C 2.2GHz, Gemini, 
NVIDIA K20x 

USA 560,640 17.6 8.21 

2 Lawrence Livermore National 
Laboratory IBM 

Sequoia 
BlueGene/Q,  
Power BQC 16C 1.6GHz, Custom 

USA 1,572,864 16.3 7.89 

3 RIKEN Advanced Institute for 
Computational Science  Fujitsu 

K Computer 
SPARC64 VIIIfx 2.0GHz,  
Tofu Interconnect  

Japan 795,024 10.5 12.66 

4 Argonne National Laboratory IBM 
Mira  
BlueGene/Q,  
Power BQC 16C 1.6GHz, Custom 

USA 786,432 8.16 3.95 

5 Forschungszentrum Juelich (FZJ) IBM 
JuQUEEN 
BlueGene/Q,  
Power BQC 16C 1.6GHz, Custom 

Germany 393,216 4.14 1.97 

6 Leibniz Rechenzentrum IBM 
SuperMUC 
iDataPlex DX360M4, 
Xeon E5 8C 2.7GHz, Infiniband FDR 

Germany 147,456 2.90 3.52 

7 Texas Advanced Computing 
Center/UT Dell 

Stampede 
PowerEdge C8220, 
Xeon E5 8C 2.7GHz, Intel Xeon Phi 

USA 204,900 2.66 

8 National SuperComputer  
Center in Tianjin NUDT 

Tianhe-1A 
NUDT TH MPP, 
 Xeon 6C, NVidia, FT-1000 8C 

China 186,368 2.57 4.04 

9 CINECA IBM 
Fermi 
BlueGene/Q,  
Power BQC 16C 1.6GHz, Custom 

Italy 163,840 1.73 0.82 

10 IBM IBM 
DARPA Trial Subset 
Power 775,  
Power7 8C 3.84GHz, Custom 

USA 63,360 1.52 3.57 



Potential System Architectures 
What is Possible 

Systems 2009 2015 +1/-0 2018 +1/-0 

System peak 2 Peta 100-300 Peta 1 Exa 

Power 6 MW ~15 MW ~20 MW 

System memory 0.3 PB 5 PB 64 PB (+) 

Node performance 125 GF 0.5 TF or 7 TF 2 TF  or 10TF 

Node memory BW 25 GB/s 0.2TB/s or 0.5TB/s 0.4TB/s or 1TB/s 

Node concurrency 12 O(100) O(1k) or 10k 

Total Node Interconnect BW 3.5 GB/s 100-200 GB/s 
10:1 vs memory 
bandwidth 
2:1 alternative 

200-400GB/s 
(1:4 or 1:8 from memory 
BW) 

System size (nodes) 18,700 50,000 or 500,000 O(100,000) or O(1M) 

Total concurrency 225,000 O(100,000,000) *O(10)-
O(50) to hide latency 

O(billion) * O(10) to 
O(100) for latency hiding 

Storage 15 PB 150 PB 500-1000 PB (>10x 
system memory is min) 

IO 0.2 TB 10 TB/s 60 TB/s (how long to 
drain the machine) 

MTTI days O(1day) O(1 day) Slide 10 

Presenter
Presentation Notes
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Why can’t we keep doing what we’ve been doing? 
Optimization target for hardware has evolved to new direction  
(but pmodels have not kept up) 

Old Constraints 

• Peak clock frequency as primary 
limiter for performance improvement 

• Cost: FLOPs are biggest cost for 
system: optimize for compute 

• Concurrency: Modest growth of 
parallelism by adding nodes 

• Memory scaling: maintain byte per 
flop capacity and bandwidth 

• Locality: MPI+X model (uniform 
costs within node & between nodes) 

• Uniformity:  Assume uniform 
system performance 

• Reliability: It’s the hardware’s 
problem 

 

 

New Constraints 

• Power is primary design constraint for 
future HPC system design 

• Cost: Data movement dominates: 
optimize to minimize data movement 

• Concurrency: Exponential growth of 
parallelism within chips 

• Memory Scaling: Compute growing 
2x faster than capacity or bandwidth 

• Locality: must reason about data 
locality and possibly topology 

• Heterogeneity: Architectural and 
performance non-uniformity increase 

• Reliability: Cannot count on 
hardware protection alone 
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Fundamentally breaks our current programming paradigm and computing ecosystem 
 



Programming Models are a Reflection of the 
Underlying Machine Architecture 
• Express what is important for performance 
• Hide complexity that is not consequential to performance 
Programming Models are Increasingly Mismatched 
with Underlying Hardware Architecture 
• Changes in computer architecture trends/costs 
• Performance and programmability consequences 
Recommendations on where to Reformulate 
Programming Models for the Future of HPC 
• Emphasis on Performance Portability 
• What to virtualize 
• What to make more expressive/visible 
• What to ignore 

Effect of Hardware on Programming Models 



The Programming Model is a Reflection of the 
Underlying Abstract Machine Model 

Equal cost SMP/PRAM model 
• No notion of non-local access 
• int [nx][ny][nz]; 

 
Cluster: Distributed memory model 
• No unified memory 
• int [localNX][localNY][localNZ]; 

 
PGAS for horizontal locality 
• Data is LOCAL or REMOTE 
• shared [Horizontal] int [nx][ny][nz]; 
 
HPGAS for vertical data movement 
• Depth of hierarchy also matters now 
• shared [Vertical][Horizontal] int [x][y][z];? 
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Abstract Machine Models 
Definition: An Abstract Machine model represents the 
machine attributes that will be important to reasoning 
about code performance 
 

• Enables us to reason about how to map algorithm onto 
underlying machine architecture 
 

• Enables us to reason about power/performance trade-offs for 
different algorithm or execution model choices 
 

• Want model to be as simple as possible, but not neglect any 
aspects of the machine that are important for performance 

 



Notional Multi-Scale Machine Model 
(what do we need to reason about when designing a new code?) 

Cores 
•How Many 
•Heterogeneous 
•SIMD Width 

Network on Chip (NoC) 
•Are they equidistant or  
•Constrained Topology (2D) 

On-Chip Memory Hierarchy 
•Automatic or Scratchpad? 
•Memory coherency method? 

Node Topology 
•NUMA or Flat? 
•Topology may be important 
•Or perhaps just distance 

Memory 
•Nonvolatile / multi-tiered? 
•Intelligence in memory (or not) 

Fault Model for Node 
• FIT rates, Kinds of faults 
• Granularity of faults/recovery 
 

Interconnect 
•Bandwidth/Latency/Overhead 
•Topology 

Primitives for data 
movement/sync 

•Global Address Space or 
messaging? 
•Synchronization 
primitives/Fences 



For each parameterized machine attribute, can  
• Ignore it: If ignoring it has no serious power/performance consequences 

• Abstract it (virtualize): If it is well enough understood to support an automated mechanism to 
optimize layout or schedule 
• This makes programmers life easier (one less thing to worry about) 

• Expose it (unvirtualize): If there is not a clear automated way of make decisions 
• Must involve the human/programmer in the process (make pmodel more expressive) 
• Directives to control data movement or layout (for example) 

Want model to be as simple as possible, but not neglect any aspects of the 
machine that are important for performance 

 

Notional Multi-Scale Abstract Machine Model 
(what do we need to reason about when designing a new code?) 



Data Movement 
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• Cost to move a bit on copper wire: 
• power= bitrate * Length / cross-section area 
 
 
 

• Wire data capacity constant as feature size shrinks 
• Cost to move bit proportional to distance 
• ~1TByte/sec max feasible off-chip BW (10GHz/pin) 
• Photonics reduces distance-dependence of bandwidth 

 

The Problem with Wires:  
Energy to move data proportional to distance 

Copper requires to signal amplification 
even for on-chip connections  

Photonics requires no redrive 
and passive switch little power 
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The Cost of Data Movement in 2018 

FLOPs will cost less 
than on-chip data 

movement! (NUMA)  
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Data Movement Costs 
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Energy Efficiency will require careful management of data locality 

Important to know when you are on-chip and when data is off-chip! 



• Current Algorithms are designed to minimize FLOPs 
• Often at the expense of data movement 
 

• But if data movement costs more than FLOPs, we are 
using the wrong metric for optimizing algorithms! 
 

• Future of algorithm design 
• Incorporate data movement costs as a metric for “algorithm 

complexity” 
• Consume additional flops to AVOID data movement (Communication 

Avoiding Algorithms) 
• And make communication “locality aware” (will talk more about that) 
• Even communication topology may be important 

Consequences for Algorithm Design 
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Future of On-Chip Architecture 
(Nov 2009 DOE arch workshop) 

~1000-10k simple cores 
4-8 wide SIMD or VLIW bundles 
Either 4 or 50+ HW threads 
On-chip communication Fabric 
• Low-degree topology for on-chip 

communication (torus or mesh) 
• Can we scale cache-coherence? 
• HW msg. passing 
• Global (possibly nonCC memory) 
• Shared register file (clusters) 
Off-chip communication fabric 
• Integrated directly on an SoC 
• Reduced component counts 
• Coherent with TLB (no pinning) 
 

Scale-out for Planar geometry 



Cost of Data Movement 
(towards “coherence domains” on chip) 

Cost of moving long-distances on chip 
motivates clustering on-chip 
• 1mm costs ~6pj (today & 2018) 
• 20mm costs ~120 pj (today & 2018) 
• FLOP costs ~100pj today 
• FLOP costs ~25pj in 2018 
 
Different Architectural Directions 
• GPU: WARPs of hardware threads clustered 

around shared register file 
• CMP: limited area cache-coherence 
• CMT: hardware multithreading clusters 

 
 



Data Locality Management 
Vertical Locality Management 
(spatio-temporal optimization) 

Horizontal Locality Management 
(topology optimization) 
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Software Mechanisms 
for Expressing Locality 



Problems with Existing Abstractions 
for Expressing Locality 

Our current programming models assume all 
communicating elements are equidistant (PRAM)  
• OpenMP, and MPI each assume flat machine at their level of parallelism 

 
But the machine is not flat!!! 
• Lose performance because expectation and reality are mismatched 
• Pmodel does not match underlying machine model!! 

 
What is wrong with Flat MPI? 
• 10x higher bandwidth between cores on chip 
• 10x lower latency between cores on chip 
• If you pretend that every core is a peer (each is just a generic MPI rank) you 

are leaving a lot of performance on the table 
• You cannot domain-decompose things forever 



Two-level Parallelism? (MPI+X?) 

Hybrid Model (MPI+X) 
• Recognizes biggest cost delta is when you go off-chip 
• This is not the same as old SMPs 

– 10x-100x higher bandwidth between cores on chip and 10x-100x lower latency 
• Failure to exploit hierarchical machine architecture will 

drastically inhibit ability to efficiently exploit concurrency! 
(requires code structure changes) 

 
If this abstraction is sufficient to capture 
performance (within factor of 2x) then why make 
things more complicated by having hierarchical 
abstraction? 

Presenter
Presentation Notes
System programmers of serial applications write enough bugs into the code as it is.  Now there is another dimension of mistakes that can be made involving incorrect reasoning about data-flow hazards. What we need is a mechanism that fails by inhibiting performance in response to incorrect reasoning rather than getting the wrong answer (and doing so inconsistently).  Transactions try to deliver this… if you fail to identify a dataflow hazard (which would normally result in changed answer), then the transaction will roll back and performance collapses to the serial case.  Any way that we can degrade performance in response to an error in reasoning rather than outright failing is a benefit.



Comm Perf of 3D FFT on Franklin
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Current Practices (2-level Parallelism) 
Hybrid Model improves 3D FFT communication performance 
• Enables node to send larger messages between nodes 
• Substantial improvements in communications efficiency 

Good News! 
 
Benefits of expressing 
Two-levels of locality 



Current Practices (2-level Parallelism) 
NUMA Effects Ignored (with huge consequence) 

MPI+OMP Hybrid  
• Reduces memory footprint 
• Increases performance up to NUMA-node limit 
• Then programmer responsible for matching up computation with data 

layout!! (UGH!) 
• Makes library writing difficult and Makes AMR nearly impossible! 

It’s the Revenge 
of the SGI 
Origin2000 

Bad News! 

Presenter
Presentation Notes
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Implicitly binds compute location to data layout 
Data Layout in PGAS understands two categories of 
data access performance 

– Local 
– Not local 

 
Enables powerful locality aware looping constructs 

– Can write loop in conventional form, while typesystem 
determines data layout 

– UPC_FORALL() will execute iterations where data is local 
(affine renumbering of loop iterations) 

• this is HUGE because totally abstracts/virtualizes # cores 
• It also implicitly binds execution locality to data layout 

 
This is better than flat model, but . . . 

 

Partitioned Global Address Space (PGAS) 
better expression of data locality 



PGAS 1D partitions May Be Insufficient for  
Expressing hierarchical energy and locality cost 

Hierarchical Energy Costs 
• FP Op: 100pj 
• Register: 3.5pj 
• 1mm on chip: 6pj 
• 20mm on chip: 120pj 
• Off-chip (SMP): 250pj 
• Off-chip (DRAM): 2000pj 
• Off-chip (neighboring node): ~2500pj 
• Off-chip (cross-system): ~3000pj 
 

 



Example from UPC 

1D Decomp 
• Shared [blocksize] int [nx][ny][nz] 

 
3D Decomp 
• Struct gridcell_s { int cell[cellsize] } 
• Shared [blocksize] gridcell_t cellgrids[nthreads]; 
• #define grids(gridno,z,y,z) cell_grids[gridno][((z)/DIMZ) 

*NO_ROWS*NO_COLS+ etc….. 
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Multidimensional Blocking? 
• Shared [coreblock][nodeblock] int x[nx][ny]; 
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Expressing Hierarchical Layout 
Hierarchical layout statements 

– Express mapping of “natural” enumeration of an array to the unnatural 
system memory hierarchy 

– Maintain unified “global” index space for arrays (A[x][y][z]) 
– Support mapping to complex address spaces 
– Convenient for programmers 

Iteration expressions more powerful when they 
bind to data locality instead of threadnumber 

– instead of upc_forall(;;;<threadnumber>)  
– Use upc_forall(;;;<implicitly where Array A is local>) 
 

upc_forall(i=0;i<NX;i++;A)  
 C[j]+=A[j]*B[i][j]); 
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Hierarchical Layout Statements 
Building up a hierarchical layout 

– Layout block coreblk {blockx,blocky}; 
– Layout block nodeblk {nnx,nny,nnz}; 
– Layout hierarchy myheirarchy {coreblk,nodeblk}; 
– Shared myhierarchy double a[nx][ny][nz]; 

 

38 

• Then use data-localized parallel loop 
    doall_at(i=0;i<nx;i++;a){ 

  doall_at(j=0;j<ny;j++;a){ 
    doall_at(k=0;k<nz;k++;a){ 
  a[i][j][k]=C*a[i+1]…> 

• And if layout changes, this loop remains the 
same 

Satisfies the request of the application developers 
(minimize the amount of code that changes) 



Conclusions on Data Layout 
Failure to express data locality has substantial cost in 
application performance 
• Compiler and runtime cannot figure this out on its own given limited 

information current languages and programming models provide 
 
Hierarchical data layout statements offer better 
expressiveness 
• Must be hierarchical 
• Must be multidimensional 
• Support composable build-up of layout description 
 
Data-centric parallel expressions offer better 
virtualization of # processors/threads 
• Don’t execute based on “thread number” 
• Parallelize & execute based on data locality 
• Enables layout to be specified in machine-dependent manner without 

changing execution 
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Interconnects 

Technology Trends and Effects on Application 
Performance 
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Scalable Interconnects 

Can’t afford to continue with Fat-
trees or other Fully-Connected 
Networks (FCNs) 
 
But will Ultrascale applications 
perform well on lower degree 
networks like meshes, hypercubes 
or torii. Or high-radix 
routers/tapered dragonfly? 
 

How can we wire up a custom 
interconnect topology for each 
application? 
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Interconnect Design Considerations  
for Message Passing Applications 

• Application studies provide insight 
to requirements for Interconnects 
(both on-chip and off-chip) 
– On-chip interconnect is 2D planar 

(crossbar won’t scale!) 
– Sparse connectivity for most 

apps.; crossbar is overkill 
– No single best topology 
– Most point-to-point message 

exhibit sparse topology + often 
bandwidth bound 

– Collectives tiny and primarily 
latency bound 

• Ultimately, need to be aware of the 
on-chip interconnect topology in 
addition to the off-chip topology 

– Adaptive topology interconnects (HFAST) 
– Intelligent task migration? 
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Interconnect Design Considerations  
for Message Passing Applications 

• Application studies provide insight 
to requirements for Interconnects 
(both on-chip and off-chip) 
– On-chip interconnect is 2D planar 

(crossbar won’t scale!) 
– Sparse connectivity for most 

apps.; crossbar is overkill 
– No single best topology 
– Most point-to-point message 

exhibit sparse topology + often 
bandwidth bound 

– Collectives tiny and primarily 
latency bound 

• Ultimately, need to be aware of the 
on-chip interconnect topology in 
addition to the off-chip topology 

– Adaptive topology interconnects (HFAST) 
– Intelligent task migration? 

Opportunity 



CCSM Performance Variability 
(trials of embedding communication topologies) 

Result of 311 runs of the coupled climate model showing model 
throughput as a function of completion date. 
 
 

Data from Harvey Wasserman 

COV ~9% 



Node placement of a fast, average and slow run 

Fast run: 940 seconds Slow run: 2462 seconds Average run: 1100 seconds 

Y=8 

X=17 

Z=24 

from Katie Antypas 



Node placement of a fast, average and slow run 

Fast run: 940 seconds Slow run: 2462 seconds Average run: 1100 seconds 

Y=8 

X=17 

Z=24 

from Katie Antypas 

Failure to exploit 
opportunity 

(when virtualization of 
topology goes wrong) 



Topology Optimization 
(turning Fat-trees into Fit-trees) 

A Fit-tree uses OCS to prune 
unused (or infrequently used) 
connections in a Fat-Tree 
Tailor the interconnect 
bandwidth taper to match 
application data flows 
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Huge opportunity for communication topology 
optimization to improve performance 

– Runtime information gathering for active task migration, circuit 
switching 

– Use intelligent runtime to remap for locality or to use circuit 
switching to optimize switch topology 

 
Current Programming Models do not provide facility to 
express topology 

– OpenMP topology un-aware 
– MPI has topology directives (tedious, and rarely implemented or 

used) 
– Results in substantial measurable losses in performance 

(within node/OpenMP and inter-node/MPI) 
 

Need to provide the compiler, runtime & resource manager more information about topology 

Conclusions on Interconnect 



Heterogeneity / Inhomogeneity 
 

The case for asynchronous runtime systems 
(aka “execution models”) 



Assumptions of Uniformity is Breaking 
(many new sources of heterogeneity) 

• Heterogeneous compute engines (hybrid/GPU computing) 
• Irregular algorithms 
• Fine grained power mgmt. makes homogeneous cores look 

heterogeneous 
– thermal throttling on Sandybridge – no longer guarantee deterministic clock rate 

• Nonuniformities in process technology creates non-uniform 
operating characteristics for cores on a CMP 

• Fault resilience introduces inhomogeneity in execution rates 
– error correction is not instantaneous 
– And this will get WAY worse if we move towards software-based resilience 

 

Presenter
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Sources of performance heterogeneity increasing 
• Heterogeneous architectures (accelerator) 
• Thermal throttling 
• Performance heterogeneity due to transient error recovery 

 
Current Bulk Synchronous Model not up to task 
• Current focus is on removing sources of performance variation 

(jitter), is increasingly impractical 
• Huge costs in power/complexity/performance to extend the life 

of a purely bulk synchronous model 
 

Embrace performance heterogeneity:  Study use of asynchronous 
computational models (e.g. SWARM, HPX, and other concepts from 1980s) 

Conclusions on Heterogeneity 



Why Wait for Exascale 
everything is breaking NOW! 



The Power and Clock Inflection Point in 2004 

Source: Kogge and Shalf, IEEE CISE 



It’s the End of the World as We Know It! 

Source: Kogge and Shalf, IEEE CISE 

Summary Trends 



The changes we are concerned about are underway NOW 
 
Specifics of exascale machine are not as important as the design TRENDS  
 
Focus on the first derivative of change rather than the target point design 
• If you focus on target design, then it will create a brittle non-performance-portable 

solution 
• Performance portability SHOULD be the right metric (how little code to change 

between generations of machines) 
• Architectural Simulation helps us with sensitivity analysis and extrapolation 
 
To this end, we should concentrate on what hardware abstractions correctly 
minimize the impact of these design trends 
• How do I make # cores seemingly go away? (or scale without intervention) 
• How do I express communication costs in a way that makes it easier to reason 

about data placement/locality without being pinned down to the specifics of one 
machine 

Why Wait for Exascale Machine? 



Programming model IS, and SHOULD BE a proper 
reflection of the underlying machine architecture 
 
Machine attributes are parameterized 

•Changes with each generation of machine and between different vendor 
implementations 
•Pmodel should target the parameterized attributes 

 
For each parameterized machine attribute 
• Ignore it: If ignoring it has no serious power/performance 

consequences 
• Abstract it (virtualize): If it is well enough understood to support an 

automated mechanism to optimize layout or schedule 
• Expose it (unvirtualize): If there is not a clear automated way of 

make decisions 
 

Remember the Abstract 
Machine Model 



Data layout (currently, make it more expressive) 
• Need to support hierarchical data layout that closer matches architecture 
• Automated method to select optimal layout is elusive, but type-system can 

support minimally invasive user selection of layout 
Horizontal locality management (virtualize) 
• Flexibly use message queues and global address space 
• Give intelligent runtime tools to dynamically compute cost of data movement 

Vertical data locality management (make more expressive) 
• Need good abstraction for software managed memory 
• Malleable memories (allow us to sit on fence while awaiting good abstraction) 

Heterogeneity (virtualize) 
• Its going to be there whether you want it or not 
• Pushes us towards async model for computation (post-SPMD) 

Parallelism (virtualize) 
• Need abstraction to virtualize # processors (but must be cognizant of layout) 
• For synchronous model (or sections of code) locality-aware iterators or loops 

enable implicit binding of work to local data. 
• For async codes, need to go to functional model to get implicit parallelism 

– Helps with scheduling 
– Does not solve data layout problem 

Conclusions 
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